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A numerical model used to simulate global convection and magnetic field generation in 
stars is described. Nonlmear, three-dimensional, time-dependent solutions of the anelastic 
magnetohydrodynamic equations are presented for a stratified, rotating, spherical, fluid shell 
heated from below. The velocity, magnetic field, and thermodynamic perturbations are 
expanded in spherical harmonics to resolve their horizontal structure and in Chebyshev 
polynomials to resolve their radial structure. An explicit Adams-Bashforth time integration 
scheme is used with an implicit Crank-Nicolson treatment of the diffusion terms. Nonlinear 
terms are computed in physical space; and spatial derivatives are computed in spectral space. 
The resulting second-order differential equations are solved with a Chebyshev collocation 
method. Preliminary solutions for a Solar-like model are briefly discussed. Convective 
motions driven in the upper, superadiabatic part of the zone penetrate into the lower, 
subadiabatic part of the zone. Differential rotation, induced by the interaction of convection 
and rotation, is an equatorial acceleration at the surface as observed on the Sun; below the 
surface angular velocity decreases with depth. The meridional circulation and the equator-pole 
temperature excess are within Solar observational constraints; however, the giant-cell 
velocities at the surface are larger than observed. The large-scale magnetic field, induced by 
the differential rotation and helical motions, peaks in the subadiabatic region below the 
convection zone; and, near the top of the convection zone, it is concentrated over the 
downdrafts of giant cells. A systematic drift in latitude of the magnetic field or a field reversal 
has not yet been seen. 

I. INTRODUCTION 

Many studies of stellar convection have been made via numerical simulations 
governed by the hydrodynamic or magnetohydrodynamic equations using various 
approximations and numerical techniques. Nonlinear convection in a spherical shell 
has been numerically simulated by Durney [ 11, Young [2], Gilman [3-51, and 
Marcus [6-81. These models all employ the Boussinesq approximation for which 
there is no basic density stratification. However, stellar convection zones have large 
density stratifications; so the Boussinesq approximation presents a serious limitation. 
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Several models have been developed within the anelastic approximation which 
enables one to model convection over several density scale-heights without solving 
the fully compressible equations. Latour, Spiegel, Toomre, and Zahn [9-121, Van der 
Borght 113, 141, and Massaguer and Zahn [15] have performed nonlinear, anelastic, 
modal calculations. Their solutions are represented by one or two horizontal 
planforms in plane parallel geometry with a fine vertical grid resolution. Nordlund 
[ 161 has developed a nonlinear, anelastic, multimode convection model including 
radiative transfer and has had great success in simulating Solar granulation. Another 
anelastic model, developed by Glatzmaier and Gilman [ 17-201, has been used to 
study the interaction of convection and rotation in a stratified, rotating, spherical 
shell. However, their solutions represented only initial tendencies since the nonlinear 
terms in the second-order calculations were constructed from the linear solutions of 
the first-order calculations. 

Magnetic fields were not included in the models mentioned above. However, 
convective flow of ionized stellar gas across magnetic field lines generates time- 
dependent magnetic fields which produce feedbacks on the flow and on the ther- 
modynamics. Kinematic dynamo models produce magnetic field solutions for a 
prescribed velocity field. Most of the work on kinematic dynamo theory has incor- 
porated the mean field approximation [21-251. Yoshimura [26, and references 
within] has taken kinematic theory a step further with his highly parameterized three- 
dimensional model. When his fictitious velocity is adequately tuned, the model 
produces what looks very much like the Solar magnetic cycle. A more consistent, 
three-dimensional, kinematic model has been developed by Cuong and Busse [27]. 
Their specified velocity field (in the linear magnetic induction equation) is a highly 
truncated modal solution of the hydrodynamical equations for a rotating, incom- 
pressible, spherical shell. 

Several MHD models have been developed that simultaneously solve for the 
velocity and magnetic fields; that is, the nonlinear MHD equations are solved with 
the Lorentz force in the momentum equation. The decay of unforced MHD 
turbulence has been numerically simulated by Orszag and Tang 1281 in two 
dimensions and by Pouquet and Patterson [29 ] in three dimensions to study the 
cascade of kinetic and magnetic energy. By solving two-dimensional MHD equations 
with an externally imposed magnetic field, Peckover and Weiss [30], Galloway and 
Moore [3 11, and Weiss [32, 331 have numerically simulated the concentration of 
magnetic flux into sheets and ropes between convection cells. Dynamo action 
generated by the interaction of rotation and convection has been numerically 
simulated with highly truncated modal calculations by Kropachev 1341, Soward [35], 
Baker [36], and Fautrelle and Childress [37], and with multimode calculations for a 
rotating spherical shell by Gilman [38, 391. 

These nonlinear MHD simulations have shed considerable light on many aspects 
of magnetoconvection and self-excited dynamo action; however, they all have 
employed the Boussinesq approximation. A. Nordlund (private communication) has 
recently included magnetic fields in his anelastic Solar granulation model; and P. A. 
Gilman (private communication) has converted his Boussinesq dynamo code into an 



STELLAR CONVECTIVE DYNAMOS 463 

anelastic dynamo. The model described in this paper is also a multimode, nonlinear, 
dynamic dynamo within the anelastic approximation; it includes the effects of 
rotation, spherical geometry, density stratification, and penetration into a 
subadiabatic region. We hope to gain a better understanding of global convection and 
magnetic field generation in stars by analyzing, with good spatial and temporal 
resolution, the physics responsible for such phenomena in our numerical simulations. 
We describe the model in Section II and the numerical method used to solve the 
equations in Section III. Preliminary solutions for a Solar model are presented in 
Section IV. Future papers in this series will discuss the solutions and their physical 
significance in greater detail. 

II. THE STELLAR MODEL 

We simulate global stellar convection and magnetic field generation by solving the 
nonlinear, three-dimensional, time-dependent, anelastic magnetohydrodynamic 
equations for a stratified, rotating, spherical, fluid shell heated from below. The 
anelastic approximation [ 17, 401 is valid when the convective velocity is small 
compared to the local sound speed. This should be the case when the unstable region 
is only slightly superadiabatic. To first order in an expansion parameter E 
representing either the Mach number squared or the superadiabaticity, the divergence 
of the mass flux vanishes. As a result, sound waves are filtered out. In other words, 
pressure adjusts instantaneously throughout the fluid as if the sound speed were 
infinite. Although the time derivative of the density does not appear in the anelastic 
mass continuity equation, density does vary in space and time and the fluid is 
compressible but on a convective time-scale not an acoustic time-scale. In addition, 
we assume the Alfven velocity scales like the convective velocity. The advantage 
provided by the anelastic approximation is that convection can be modeled over 
many density scale-heights with a time-step significantly larger than what would be 
needed if one were solving the fully compressible equations and forced to temporally 
resolve sound waves and fast magnetoacoustic waves. Since the stellar convection 
zones we model have large density stratifications and are very nearly adiabatic and 
since we hope to study magnetic cycles in these stellar models with periods of the 
order of tens of years, the anelastic approximation is the obvious choice. 

One of our basic assumptions is that the large-scale global structure of the 
differential rotation and magnetic field in a rotating star is determined mainly by the 
interaction of large-scale convection and rotation. The Coriolis effect on small-scale 
eddies should be insignificant since their turnover times are short compared to the 
rotation period of the star. However, the diffusion of large-scale momentum, entropy, 
and magnetic flux by these small-scale eddies is much more significant than via 
radiative or molecular processes. Therefore, in our model we explicitly resolve the 
structure and time-dependence of a large spectrum of cells while parameterizing the 
viscous, thermal, and magnetic diffusive effects of the turbulent eddies too small to 
resolve. 
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The reference state, about which perturbations are sought, is time independent, 
only a function of radius, adiabatic to first order, and described relative to a rotating 
frame. The fluid is assumed to be a fully ionized perfect gas. Centrifugal force is 
assumed negligible relative to gravitational force. In addition, we assume the viscous 
V; thermal R, and magnetic f eddy diffusivities are scalar functions of radius. The 
reference state equations of state, momentum, and energy are 

p= R,@ (la> 

dP 
z= -tTP, 

L* -dF - -de 
~=-~$~-C,K,.pz. 
47cr 

(lb) 

(lc) 

We are using the same notation as in [ 171, except here the variables are dimensional. 
The solution of Eqs. (la) and (lb) is a polytrope when assuming to first order an 
adiabatic temperature gradient [ 171. The reference state is determined by specifying 
the stellar mass, luminosity, and rotation rate, the radii of the top and bottom boun- 
daries of the spherical shell, the mean composition of the shell, the temperature and 
density at the top boundary, and the three eddy diffusivities as functions of radius. 
Alternatively, we could specify a reference state that is more like one resulting from a 
mixing-length model instead of using a polytropic stratification. 

Equation (lc) states that in the absence of large-scale motion the stellar luminosity 
is carried partially by the small-scale turbulent heat flux driven by the reference state 
entropy gradient and partially by the radiative heat flux driven by the reference state 
temperature gradient. The radiative thermometric diffusivity @,. is constructed with the 
opacity a function of the reference state temperature and density. Then the reference 
state entropy gradient dS/dr, which is of order E, is determined by Eq. (1~). Note that 
we are assuming both 

I? 2 and 
l? 

are of order E which is a very good assumption for the stellar convection zones we 
will consider. Also, note that in a subadiabatic region where the entropy gradient is 
positive the turbulent heat flux is directed downward. This is realistic since fluid 
motions tend to bring the medium closer to an adiabatic state. That is, they tend to 
make the temperature gradient less steep in a superadiabatic region and more steep in 
a subadiabatic region. This formulism of the heat flux differs from the traditional 
mixing-length approach which assumes no penetration into the subadiabatic region. 
In mixing-length models (V - V,,), which is (-(H,/c,)(dF/dr)), jumps from a very 
small positive value in the superadiabatic region to a relatively large negative value in 
the subadiabatic region. In our model the transition is more gradual due to the 
presence of small-scale eddies generated by large-scale motions penetrating into the 
subadiabatic region. 
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In the preliminary calculations we choose to let the eddy diffusivities decrease with 
depth. This is partly motivated by linear calculations using these diffusivities [ 19, 201 
which produced surface differential rotation profiles in good agreement with Solar 
observations. Also, an argument made by P. A. Gilman (private communication) 
based on mixing-length theory provides a physical reason for such a radial depen- 
dence. He argues that, although the product of convective velocity and pressure scale- 
height remains nearly constant in a mixing-length convection model, the mixing- 
length velocity represents the total convective velocity; whereas, our eddy diffusivities 
represent only the effect of those scales too small to explicitly resolve in the model. 
Therefore, since eddies of the order of a pressure scale-height are more easily resolved 
in the lower part of the zone, our eddy diffusivities should represent a smaller 
diffusive effect there than near the top of the zone where the pressure scale-height is 
much smaller. Another argument is based on the entropy gradient. Since the upper 
part of our shell is superadiabatic whereas the lower part is subadiabatic, the large- 
scale motions, which generate the eddies, should be much weaker in the lower part of 
the shell. Consequently, the eddies should have a smaller diffusive effect there. In a 
future paper we will account for eddy diffusion is a more self-consistent manner by 
using a subgrid-scale eddy diffusivity. 

The anelastic perturbation equations are described in [ 171 and will be listed here in 
their dimensional form. Two magnetic field equations have been added along with the 
Lorentz force in the momentum equation and Joule heating in the entropy equation. 
Barred variables are reference state variables which are only functions of radius; 
unbarred variables are perturbations which are functions of radius, colatitude, 
longitude, and time. Note that the perturbation temperature 8, density p, pressure p, 
and entropy s all include a time-dependent, spherically symmetric component that 
modifies the time-independent reference state; consequently, the mean state is time- 
dependent. The perturbations equations of state, mass flux, momentum, entropy, 
magnetic flux, and magnetic induction are 

v *pv=o (2b) 

-~PTlvl~+--&(vxB)xB 

/%+v. (Epms)-p&. V(d+s) 
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$=Vx(vXB)-Vx(qTxB). cm 

The viscous stress tensor is related to the rate of strain tensor by 

eij-f(V. v)di,/ . 
Equation (2f) is the result of the MHD approximation for which the electric current 
density is 

J=&-VXB 

and the electric field is 

E=fjVXB-VXB. 

The nondimensional equations [ 171 contain Rayleigh and Froude numbers which 
depend on the value of the expansion parameter E. In [ 171, E was chosen to be 
proportional to the entropy gradient at the top of the convection zone. Instead, one 
could have chosen it to be proportional to the change in the entropy across the 
unstable region. However, the precise definition of the expansion parameter used to 
formally derive the anelastic equations from the fully compressible equations is 
arbitrary. What is essential for Eqs. (2) to be valid is that the resulting convective 
and Alfven velocities be small compared the local sound speed and the ther- 
modynamic perturbations be small relative to their reference state values. This should 
be the case when the specified change in the reference state entropy across the 
unstable region is small. 

Note that the perturbation diffusive heat flux in Eq. (2d) is driven by the pertur- 
bation entropy gradient. This is consistent with the concept of an eddy thermometric 
diffusivity since the heat liberated by an eddy after moving adiabatically over a 
mixing-length in pressure equilibrium is proportional to the change in the entropy of 
the surroundings over that disslacement. Note also that the total entropy gradient in 
Eq. (2d), i.e., the sum of the reference state and the perturbation entropy gradients, 
appears in the advective term. This follows naturally from the assumption that the 
reference state entropy gradient is of order E as mentioned above. As a result, the 
perturbations grow until the spherically symmetric part of the total entropy gradient 
in the unstable region becomes as small as it can for the given diffusivities. 

A total perturbation energy equation can be constructed by adding the dot product 
of the velocity and the momentum equation, the entropy equation, and the dot 
product of the magnetic field and the magnetic induction equation. We assume imper- 
meable, stress-free boundaries; so the rate of change of the total energy of the shell 

.dS (3a) 
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is determined by the perturbation heat flux and magnetic energy flux through the 
boundaries. We require the total radial diffusive heat flux through the bottom 
boundary to be constant; and we assume the core below the shell is perfectly elec- 
trically conducting. Therefore, the surface integral over the bottom boundary in 
Eq. (3a) vanishes. The choice of boundary conditions at the top is not so obvious. 
Among the many possibilities, we could require the radial heat flux to be constant or 
the entropy to be constant over the top boundary. However, when the effect of 
rotation is significant, the top boundary condition on the entropy perturbation has 
little effect on the dynamics in the bulk of the convection zone. This was also found 
to be the case in the linear anelastic calculations [ 191. In addition, we will require the 
magnetic field at the top either to have only a radial component or to be matched to 
an external potential field. If, at the top boundary, the radial heat flux were required 
to be constant and the magnetic field only radial the total energy of the shell would 
remain constant. However, matching to an external potential field is more attractive 
since the structure and amplitude of the external magnetic field is determined by the 
field at the top boundary which is known at each time-step. Although, an external 
potential field exists only in the absence of external currents, which is not case on 
short time-scales in the stellar atmosphere above the convection zone, such a 
treatment should result in an approximate simulation of the large-scale structure and 
evolution of an external magnetic field anchored far below the stellar surface. 

The rate of change of the total angular momentum of the shell relative to the 
rotating frame of reference depends on the Reynolds, Maxwell, and viscous stresses 
integrated over the boundaries. However, with the above stated boundary conditions, 
the total stress vanishes at the top and bottom; so the total angular momentum of the 
shell remains constant: 

I rsin8pv,dV=O. Pb) I. 
Likewise the total mass of the shell remains constant: 

i 
pdV=O. 

“V 
(3c) 

III. THE NUMERICAL METHOD 

Since the mass flux and the magnetic flux are solenoidal, they can be written as a 
sum of poloidal and toroidal vectors [41, 421: 

pv=VXVX(Wr)+VX(ZF) (da) 

B = V x V x (Br^) + V x (J?). (4b) 

That is, Eqs. (2b) and (2e) are exactly satisfied with this formulism. Note that 
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spherically symmetric radial components, inversely proportional to r2, formally could 
be added to (4a) and (4b); however, the impermeable and perfectly electrically 
conducting bottom boundary conditions do not allow these contributions. Conse- 
quently, there are six dependent variables: the defining scalars W and Z for the 
poloidal and toroidal parts of the mass flux, the defining scalars B and J for the 
poloidal and toroidal parts of the magnetic field, and the entropy s and pressure p 
perturbations. The temperature and density perturbations are easily obtained from the 
perturbation equation of state (2a). 

Each of the six functions are expanded in spherical harmonics Y;t(0,$). According 
to Eq. (4a), the three components of the mass flux take the forms 

/TV,=; 2 1(1+ 1) WYY;t 
I,m 

1 -y aw;t ;” 
me=- - - r sin e & i ar 

sin 19 ‘L 
+z a# I” 

dY;t 
- 1 

l 5‘ /iv@=- 
( 

aw;l au;l aY;t 
r sin e i$ 

---Z;l sin t?--- 
ar ~74 ae i 

. 

The radial component of the curl of the mass flux is 

(V x pv>, = f 5 Z(1f 1) Z;lY;l. 

Similar expressions exist for the magnetic field in terms of B;” and J;“. 
The complex coeffkients of the Yy are further expanded in Chebyshev 

polynomials. For example: 

Wy(r, t) = -$ 
( ) 

l/2 N 

2” W;l,W T(r). 
tt=O 

The double quotes means that the n = 0 and n = N terms are multiplied by 4. The 
radial coordinate r is mapped into coordinate x by 

X= 
2r - rtop - ‘hot 

rtop - rbot 

in order to use the Chebyshev mesh-points defined as 

with k = 0 to N. One could also have incorporated a stretched radial mesh before 
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mapping to the Chebyshev points. The Chebyshev polynomials evaluated at these xk 
are 

so the transform from (r, 1, m) space to (n, 1, m) space is 

112 N 

Many properties and techniques of Chebyshev expansions are discussed in [43]. 
The above expansions are truncated such that 

O<lml<l<L and O<n<N. 

When no symmetry is assumed, the six dependent functions are represented by all I 
and m wave numbers in the above range; so a full spherical shell is modeled. If one 
required the motion to be symmetric with respect to the equator with no mass flux 
through the equatorial plane, W;t, s;“, and p;” exist for only even (I + m) and Z;l for 
only odd (I + m). The magnetic field solutions can then be either “dipole-like,” with 
J;” existing for only even (1+ m) and B;” for only odd(l + m), or “quadrupole-like” 
for which the opposite is true [44]. With these prescribed symmetries, one effectively 
models a hemispherical shell. One could also prescribe symmetry with respect to a 
meridian plane by using only even m. We model a full spherical shell and usually set 
L = 3 1 and N = 16 which corresponds to 1024 horizontal modes and 17 radial 
modes. We explicitly resolve a large spectrum of modes with full nonlinear coupling 
because highly truncated modal calculations typically produce artificially large 
temporal variations for systems that are intrinsically time dependent [38]. 

Spectral methods have been shown to require only half the resolution in each 
spatial dimension as finite-difference methods to achieve the same accuracy [45, 461. 
This apparently is due to the fact that an expansion in orthogonal functions provides 
information everywhere instead of only at the mesh-points. In addition, all spatial 
derivatives can be computed exactly in spectral space. Spherical harmonics are the 
natural expansion functions for a spherical shell problem. Among their many nice 
properties they do not exhibit the “pole problem” which plagues finite-difference and 
Fourier series schemes in latitude [47]. That is, due to the convergence of meridian 
planes near the poles, a much smaller time-step, compared to that required for a 
spherical harmonic code, must be used for a given resolution unless some mesh-points 
are filtered out near the poles. Chebyshev polynomials have been chosen because they 
have a rapid rate of convergence and can easily cope with complicated boundary 
conditions [43, 481. In addition, fast Fourier transform algorithms [49] are 
applicable to Chebyshev transformations and to the longitudinal part of spherical 
harmonic transformations. 

The equations for the complex coefficients of the spherical harmonics are provided 
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by the anelastic perturbation equations (2). The radial component of the momentum 
equation, the radial component of the curl of the momentum equation, the entropy 
equation, the radial component of the induction equation, and the radial component 
of the curl of the induction equation respectively provide coupled, nonlinear equations 
for W;“, Z;l, s;“, B;“, and J;“, each involving a first-order time derivative and a 
second-order radial derivative. A second-order differential equation for p;“, without a 
time derivative, is obtained from the divergence of the momentum equation using 
Eq. (2b). Note that this equation is solved after the velocity, entropy perturbation, 
and magnetic field are calculated for that time-step. This is the essence of what was 
referred to above as instantaneous pressure adjustments. These equations represent a 
17th-order system of differential equations: twelve orders in space and five orders in 
time. Due to their length, these equations are not displayed here. 

A semi-implicit time integration is performed in (r, 1, m) space, i.e., in spectral 
space relative to the horizontal dependence and in physical space relative to the 
radial dependence. Small random initial conditions are specified for s;” and By; 
however, we usually do not initialize the By until the hydrodynamic solution has 
fully developed. We use an explicit Adams-Bashforth scheme with an implicit 
Crank-Nicolson treatment of the diffusion terms. Both time integration schemes are 
second-order accurate. An explicit leap-frog scheme would also be second-order 
accurate, however it proved to be unconditionally unstable with Chebyshev methods 
[50]. In addition, the Adams-Bashforth scheme, unlike the leap-frog scheme, does 
not have a decoupling problem between even and odd time-steps. The Crank- 
Nicolson scheme was chosen to avoid the stringent radial diffusion restriction on the 
time-step which would exist for an explicit scheme due to the convergence of the 
Chebyshev radial mesh-points at the boundaries. 

Consider, for example, the equation for s;” 

where f 7 is the diffusion term 

I 

and g;” represents the contribution from the advection, viscous heating, and Joule 
heating terms. This dynamical equation is approximated by 

where st = s;t(r, t). Note that when the length of the time-step is changed from At, to 
At, the coefficients of gr and gi’-,, in (5b) should be (At,/2)(2 + At,/At,) and 
-(At2/2)(At2/Atl), respectively. 
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The five second-order differential equations (in r) resulting from the above stated 
time differencing scheme together with the second-order differential equation for p;” 
are solved with a Chebyshev collocation method [51-531. That is, the equations are 
satisfied at all the Chebyshev radial mesh-points except two in order to satisfy the 
boundary conditions without over specifying the problem. We choose the points 
adjacent to the top and bottom boundaries to be the two mesh-points at which the 
equations are not forced to be satisfied; however, they are very nearly satisfied at 
these points because the Chebyshev mesh-points converge at the boundaries. 

Since only the diffusion terms are treated implicitly, the matrices that require 
inverting are only (N+ 1) by (N+ l), where (N + 1) is the number of Chebyshev 
polynomials and also the number of Chebyshev mesh-points. There is one matrix 
equation for each I and m of each of the six dependent functions. However, the 
matrices that require inverting do not depend on m since Z(1+ 1) is the eigen-value of 
the horizontal Laplacian. In addition, they do not depend on time since the reference 
state is time-independent. Consequently, one matrix for each 1 of each of the six 
functions is inverted via LU decomposition are stored. As a result, the matrix 
equations are easily solved at each time-step by simple matrix multiplications. 

Each of the six second-order differential equations for each 1 and m requires two 
boundary conditions. The impermeable boundary condition forces W;” to vanish at 
the top and bottom. The stress-free boundary condition forces 

l3’W;t 1 dr2/7 awy ---0 and 
azy 1 dr’p 

7-7 r p dr ar --7 ar 
-z;l=o 

rp dr 

at the top and bottom. Since there are four boundary conditions on each W;l and 
only two are required, two conditions are indirectly satisfied via pressure boundary 
conditions. That is, p;” and its radial derivative at the boundaries at time t are forced 
to be whatever is required to satisfy the extra boundary conditions on WT at time 
t+At. 

To accomplish this, only part of the diffusion term in the equation for W;” is 
treated implicitly. Consider the’ equation for WY 

+ w + 1) z r j 1 WY +$ 

where gr represents the contribution from the pressure gradient, buoyancy, Coriolis, 
Reynolds stress, and Lorentz terms. The semi-implicit time integration scheme for 
this equation is 
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(6b) 

The boundary conditions onp;” and its derivative at time t are such to force the right- 
hand side of (6b) to vanish at the boundaries and the conditions on W;” at time t + At 
are that it vanishes at the boundaries. As a result, both the impermeable and stress- 
free boundary conditions are satisfied. 

The equation for s,” also requires two boundary conditions for each 1 and m. If one 
requires the heat flux to be constant through a boundary, the perturbation radial 
diffusive flux must vanish there; that is, as;“/& must vanish at that boundary. If s;” is 
forced to vanish at a boundary the total entropy remains constant there. 

The boundary conditions on the magnetic field are satisfied via conditions on B;” 
and J;“. A perfectly conducting bottom boundary requires the radial component of the 
magnetic field and the horizontal component of the electric field to vanish there. 
Since the radial component of the velocity also vanishes there, the horizontal 
component of the current density vanishes at the bottom. Consequently, 

B;” = a2B;” -Try - 0 arz- 
at the bottom. However, as pointed out by P. H. Roberts (private communication), 
only the second and third of these are required since the first automatically vanishes 
at the bottom when u, and B, vanish there due to the radial component of the 
induction equation assuming By was initially zero at the bottom. The two remaining 
conditions on B;” and J;” are applied at the top. If the magnetic field is required to 
have only a radial component at the top, then 

C3BT 
-=Jp=O 

ar 
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at the top boundary. If, on the other hand, the magnetic field at the top is matched to 
an external potential field that decreases at least as fast as rm3 as r + co, then 

at the top boundary; and the external magnetic field is determined by setting (for 
r 2 rtop) 

B;” = (~lB;l)~~~ r-’ and Jy=O. 

To illustrate the Chebyshev collocation method we use, consider again Eq. (5b). 
The Chebyshev expansion of s;l, as described above, is 

where xk are the Chebyshev radial mesh-points. Substituting this into Eq. (5b) 
produces the following equation at each of the (ZV + 1) xk: 

As mentioned above, Eq. (7a) is only used for (N - 1) Chebyshev points so the 
boundary conditions can be applied. If, for example, we require as;“/ar to vanish at 
the bottom and s;” to vanish at the top, the following conditions must be satisfied: 

;: (-l)“n*s;=O 
nP=o 

and (7b) 

Va) 

The matrix equation constructed from (7a) for (N- 1)x, together with (7b) can be 
written as 

AknX,, = B,. (7c) 

The (N+ 1) by (N + 1) matrix A,, is independent of m and time; the vector B, is 
known at time t; and the vector X, is the solution s;“, in Chebyshev space at time 
t + At. As mentioned above, the LU decomposition of A,, is stored so Eq. (7a) is 
solved at each time-step by simple matrix multiplication. Note that, whenever At or K 
is changed, new LU decompositions must be performed. An advantage of this method 
[52] over one that attempts to solve the equation in (n, I, m) space is that the coef- 
ficients on both sides of (7a), which are complicated functions of radius, do not have 
to be transformed to Chebyshev space and used to evaluate products of functions of 
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radius. Also, it is not disadvantage to end up in (n, 1, m) space after solving (7~) 
because the first and second-order radial derivatives of s;” need to be evaluated. The 
Chebyshev coefficients of these derivatives are easily evaluated in (n, 1, m) space by a 
backward recurrence relation [43]. Then these functions are transformed to (r, 1, m) 
space with a fast Fourier transform. 

There are three functions, pi, si, and Zy, which require special consideration with 
regard to conservation of mass, energy, and angular momentum. The spherically 
symmetric part of the radial component of the momentum equation provides a first- 
order differential equation for pi. We solve this equation using the Chebyshev 
collocation method with the equation satisfied at all Chebyshev radial mesh-points 
except the center one. There we apply conservation of mass, Eq. (3c), as an integral 
condition using (2a) after si has been determined for that time-step. 

Conservation of energy and angular momentum, Eqs. (3a) and (3b), will not be 
satisfied exactly due to truncation errors. However, one could ensure that these 
equations are satisfied at each time-step at the expense of not exactly satisfying the 
dynamic equations for si and Zy at one of the inner Chebyshev points. That is, slight 
adjustments are made in s:(r) and Z!(r) at each step to ensure conservation of energy 
and angular momentum. The Chebyshev collocation method is used as before but 
with the extra integral condition replacing the dynamic equation at the center 
Chebyshev point. The integral condition on S:(T) is determined from Eq. (3a) after 
the spherically symmetric parts of the kinetic and magnetic energies are calculated 
for that time-step together with the change in the total energy which depends on the 
heat and magnetic flux through the boundaries. The integral condition on Z;(r) is 
determined from Eq. (3b). Comparison runs with and without these integral 
conditions on si and Zy have produced negligible differences. 

Now consider the nonlinear terms. At each time-step we transform our functions to 
physical space (r, 0, #), perform the nonlinear multiplication, and transform back to 
(r, I, m) space. It has been shown [54-561 that this method is significantly faster than 
evaluating vector-coupled sums directly in spectral space. The Legendre transform in 
colatitude is performed via a Gaussian quadrature and the Fourier transform in 
longitude is performed via an FFT. 

We use 2(N + l)(L + 1)’ Chebyshev-Legendre-Fourier mesh-points in physical 
space; so the spectral representation of nonlinear terms is aliased. An unaliased 
method, which would require significantly more computer time and memory, would 
ensure that the error due to the truncation of harmonics is normal to the retained set 
of harmonics. However, a truncation error still would exist at each time-step as it 
does for the aliased method. If the two methods produce solutions that are not 
negligibly different, both solutions are bad. Only when enough harmonics are retained 
so both methods produce negligibly different solutions are the solutions good 
[53, 571. 

Another aspect of the computation of nonlinear terms should be mentioned. We 
compute terms in the p;“, Z;l, B;“, and J;” equations involving the divergence, the 
radial component of the curl, and the radial component of the curl of the curl of a 
nonlinear vector in the following way. (Note that, by using Eq. (2b), the advective 
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term in Eq. (2d) could also be written as a divergence of a nonlinear vector.) Only 
the functions required to compute a nonlinear vector F(r, 8,#) are transformed to 
physical space. Then, the functions 

f, = r2Fr, f2 =F, 
r sin 8’ 

f3 = F, 
&L-a’ 

which are calculated at all the Chebyshev-Legendre-Fourier mesh-points, are 
transformed to (r, 1, m) space. The desired spherical harmonic coefficients are then 
computed according to the formulas 

(V.F);“= ;fi-T+(l+ l)cTfZ,-~c~+,fT,,,+imS~] 

yf;:+$(r’((l+ l)c;“SY,-,-/cm It If :,+I + Nf It,>) 1 
where 

and i = (- l)‘j2. 

The radial derivatives are obtained by transforming the functions to Chebyshev 
space, calculating the coefficients of the derivatives, and transforming back to (r, 1, m) 
space. A similar procedure was proposed in [2]; however, an additional recursive 
operation is required for that procedure. 

To maintain numerical stability, we require Ar, at every time-step, to be less than 

The first of these limits is the radial diffusion time limit; where f is the explicit part of 
the viscous diffusion term in Eq. (6b). The last two are the radial and horizontal 
CFL advection time limits. 

On the Cray computer, using vectorized do-loops with L = 3 1 and N = 16, one 
time-step requires about 1.7 seconds of CPU. Without the magnetic fields, a time-step 
requires about one second CPU. The cpu time is approximately proportional to L*N. 

IV. PRELIMINARY SOLUTIONS 

We will briefly describe solutions for a model that is similar in many ways to the 
Sun. A rotating, polytropic reference state was constructed based on a standard Solar 
model. The top boundary was set at 93% of the Solar radius; and the depth of our 
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zone, including the subadiabatic region, was set at 40% of the radius of the top 
boundary. There are seven pressure scale-height across this spherical shell. We had 
the thermal K, viscous V; and magnetic rf eddy diffusivities decrease with depth 
inversely proportional to 0(r)‘.‘.; and we typically set them, in the center of the zone, 
to 7 X IOr cm2/s, 6 X lOI cm/s, and 3 X lOI cm2/s, respectively. A Kramer 
opacity was used to construct the radiative thermal diffusivity K, ; so, with the 
polytropic reference state, I?, increased with depth proportional to g(r)‘. As discussed 
above, Eq. (Ic) is valid if the ratio CZ,/r? is small. This ratio varied from approx- 
imately 10-j at the bottom of the zone to lOmE at the top. 

The MHD solutions described here had a Reynolds number (ratio of maximum 
fluid velocity to viscous diffusion velocity) of about 50, a magnetic Reynolds number 
(ratio of maximum fluid velocity to magnetic diffusion velocity) of about 100, and a 
Hartmann number (ratio of the maximum Alfven velocity to magnetic and viscous 
diffusion velocity) of about 5. A maximum, nonaxisymmetric velocity of about 
100 m/s usually occurred near the top boundary. This is ten times larger than the 
observational upper limit on Solar giant-cell velocities. The peak magnetic field at the 
top boundary was typically 100 gauss which, at our resolution, agrees fairly well 
with large-scale magnetic field observations on the Sun. The equator-pole temperature 
excess at the top boundary was about five orders of magnitude smaller than the 
average surface temperature and therefore within Solar observational constraints. As 
discussed above, the anelastic approximation is valid if the ratios of the ther- 
modynamic perturbations to their respective reference state values and the square of 
the ratios of the fluid velocity to the sound speed and the Alfven velocity to the sound 
speed are small. For our solutions, these numbers were typically 10m5. 

The reference state V - V,, is plotted in Fig. 1 (the upper curve) and defines the 
superadiabatic and subadiabatic regions of the reference (initial) state. As discussed 
above, this profile depends on the specification of I?. When a subgrid-scale eddy 
diffusivity is implemented, the subadiabatic part of the curve in the lower part of the 
zone probably will be much more negative than that depicted in Fig. 1. A typical 
profile of the spherically symmetric part of the evolved V - V,, (reference state plus 
perturbation) is also plotted in Fig. 1 (the lower curve) and illustrates how 
convection tends to make the state adiabatic, especially in the unstable region where 
the convection is strong. The two curves meet at the boundaries because constant 
heat flux boundary conditions were applied. 

Kinetic energy, magnetic energy, and entropy variance spectra are plotted versus 
the longitudinal wave number m at one particular time-step in Fig. 2. The spectra are 
symmetric about m = 0 because, although the functions are expanded in complex 
spherical harmonics, they must be real functions. The peak in the energy spectra at 
m = 0 is primarily due to the relatively large axisymmetric toroidal fields; whereas 
the secondary peak is the result of the favored aspect ratio (horizontal to radial 
dimensions). The secondary peak also appears in energy spectra from nonlinear 
Boussinesq calculations [3, 38, 391. However, for a given zone depth and rotation 
rate, the peak occurs at a larger wave number when there is a density stratification 
[ 18-201. This peak near m = 15 for the kinetic energy and entropy variance also 
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-10-S ! 
FIG. 1. The initial V - V,, (upper curve) and the evolved V - V,, (lower curve) plotted vs. radius. 

-31 0 31 

MAGNETIC ENERGY 

-31 0 31 

I._ 
-31 0 31 

LONGITUDINAL WAVE NUMBER m 

FIG. 2. Kinetic energy, magnetic energy, and entropy variance plotted vs. longitudinal wave number 
M. 
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existed when we used L = 15. We increased L to 31 so the energy in the smallest 
scale longitudinal mode would be about three orders of magnitude smaller than the 
energy in the axisymmetric (m = 0) mode, as can be seen in Fig. 2. The kinetic 
energy, magnetic energy, and entropy variance depend on the horizontal (spherical 
harmonic) wave number I in a similar way; and they drop monotonically several 
orders of magnitude with radial (Chebyshev) wave number n. The total magnetic 
energy is about three orders of magnitude smaller than the total kinetic energy. 

A typical profile of mass flux (velocity times density) in the equatorial plane is 
illustrated in Fig. 3. (Note that the points plotted in these figures do not correspond 
to the computational mesh-points. Since the solutions are stored in spectral space, we 
are free to choose any plotting resolution in physical space.) Penetration (convective 
overshooting) into the stable, subadiabatic, lower part of the zone is evident. 
Sometimes the downdraft velocities are larger than the surrounding updraft velocities 
as illustrated at 325” longitude in Fig. 3. However, we have not seen the dramatic 
downdraft plume structure simulated by fully compressible, non-rotating, two- 
dimensional, plane-parallel calculations (Toomre [58). The effect of rotation probably 
inhibits the plume structure in our three-dimensional simulations. The amount of 
overshooting depends on how the eddy diffusivities and V - V,, vary in radius. The 
velocity profile near the bottom of the zone is mainly a shear of the longitudinal 
velocity; however, small amplitude magnetogravity waves are excited in the stable 
region by the convective overshooting. 

Contours are plotted in Fig. 4 of the radial components of the giant-cell velocity 
and large-scale magnetic field in a spherical surface just below the top boundary. As 
one would expect, the convergence of the velocity over downdrafts (the broken 
contours in the top plot of Fig. 4) tends to concentrate both polarities of the radial 
magnetic field (bottom plot in Fig. 4). A similar effect, on a granulation scale, has 
been numerically simulated by A. Nordlund (private communication). 

Fig. 3. Mass flux vectors plotted in the equatorial plane. 
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RADIAL VELOCITY 

RADIAL MAGNETIC FIELD 
90’ .’ /. ..I .. .. L 

0 160 360 
LONGITUDE 

FIG. 4. Contours of the radial components of the velocity (upper plot) and the magnetic field (lower 
plot) in a spherical surface just below the top boundary. Solid (broken) contours represent outward 
(inward) directed fields. The zero contour is solid. 

Finally, we have averaged the velocity and magnetic fields in longitude at one 
particular time-step and plotted, in Fig. 5, their resulting axisymmetric toroidal and 
poloidal components in a meridian plane. The differential rotation (contours of 
angular velocity relative to the rotating frame of reference) is plotted in the upper left. 
It has approximately the same equatorial acceleration at the top boundary as that 
observed on the Sun. As found in previous nonlinear Boussinesq calculations [3-5, 
38, 391 and linear anelastic calculations [20], angular velocity tends to decrease with 
depth when a broad surface equatorial acceleration is maintained. (Note that 
Yoshimura [26] specifies an angular velocity that increases with depth in his 
kinematic dynamo model.) The meridional circulation (streamlines of mass flux) is 
plotted in the upper right of Fig. 5. In agreement with Solar observations, its 
direction at the top boundary is poleward and its kinetic energy is about two orders 
of magnitude smaller than that of the differential rotation. Contours of the toroidal 
magnetic field (the longitudinal component) are plotted in the lower left of Fig. 5 and 
the lines of force of the poloidal magnetic field in the lower right. The magnetic field 
at the top boundary has been matched to an external potential field. These plots show 
that the magnetic field is stronger in the stable region below the convection zone; 
however, this picture may be somewhat artificial since the field has not yet fully 
developed. 
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MERIDIONAL 

CIRCULATION 

FIG. 5. Longitudinally averaged fields plotted in a meridian plane: contours of angular velocity 
relative to the rotating frame of reference (upper left), streamlines of the poloidal mass flux (upper right), 
contours of the toroidal magnetic field (lower left), lines of force of the poloidal magnetic field (lower 
right). Solid (broken) contours represent fields in the direction of increasing (decreasing) longitude. 

One point should be emphasized. The streamlines of mass flux and the magnetic 
lines of force plotted in Fig. 5 are not the actual streamlines or lines of force, but 
only those corresponding to the poloidal components of the longitudinally averaged 
velocity and magnetic fields. The actual lines representing the computed mass flux 
and magnetic flux are truly three-dimensional and quite complicated. 

One can easily see, in Fig. 5, how the toroidal magnetic field has been generated 
from the poloidal field by the differential rotation. Consider, for example, the 
northern hemisphere. At low latitude the radial differential rotation shears the 
poloidal field lines producing a toroidal field in the direction of increasing longitude 
(solid contours); while at high latitude the radial shear produces a toroidal field in 
the direction of decreasing longitude (broken contours). Presumably the helical fluid 
motions generate poloidal fields from toroidal fields [59]; however, we have not yet 
seen a systematic drift in latitude of the magnetic field or a field reversal. 

Kinematic dynamo theory predicts that these magnetic structures will propagate in 
latitude away from the equator in disagreement with the observed Solar cycle 
because, in our solutions, angular velocity decreases with depth and helicity (the dot 
product of velocity and the curl of velocity) is negative in the northern hemisphere 
and positive in the southern hemisphere. If this occurs, as it has in Gilman’s 
Boussinesq dynamo calculations [39], we will have to re-examine the physics we 
have and the physics we have not included in our model. 
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V. SUMMARY 

We have proposed a method for studying global convection and magnetic field 
generation in stars by numerically simulating a self-excited, convective dynamo. The 
velocity, magnetic field, and thermodynamic perturbations are dynamically consistent 
solutions of the nonlinear, three-dimensional, time-dependent, anelastic, magneto- 
hydrodynamic equations. Our model includes the effects of rotation, spherical 
geometry, density stratification, and penetration into a subadiabatic region. A 17th- 
order system of equations is integrated in time with a semi-implicit scheme and 
solved at each time-step with a collocation method. Typically 34816 Chebyshev- 
Legendre-Fourier mesh-points are used in physical space. 

We are quite satisfied with the spherical harmonic and Chebyshev polynomial 
expansions. As mentioned above, we set L to 31 so the energy in the smallest scale 
longitudinal mode would be about three orders of magnitude smaller than the energy 
in the axisymmetric mode. In order to check and evaluate the Chebyshev method, we 
compared this code with two other versions. One version replaced the Chebyshev 
expansions and derivatives with a centered second-order finite difference scheme in 
radius; the other replaced them with a fourth-order finite difference scheme mapped 
to a stretched radial grid to achieve better resolution near the top where the scale- 
height becomes small. Treating the diffusion terms implicitly require solving tri- 
diagonal matrix equations for the second-order scheme and penta-diagonal matrix 
equations for the fourth-order scheme. All three versions produced results that 
converged to the same solution as the number of radial mesh-points were increased. 
However, at least twice as many mesh-points were required for the fourth-order finite 
difference scheme to achieve the same accuracy as the Chebyshev method; and at 
least four times as many mesh-points were required for the second-order scheme. As 
mentioned above, similar results were reported in previous evaluations of spectral 
methods [45, 461. The Chebyshev solutions with N= 16 were within 2% of those 
with N = 64 after 300 time steps. 

We are also satisfied with the semi-implicit Adams-Bashforth-Crank-Nicolson 
time integration scheme. The time-step limitations (8) were usually sufficient to 
prevent numerical instabilities (see further comments below); and decreasing dt by a 
factor of four produced virtually the same solutions. We also compared this semi- 
implicit code to a fully explicit version and found that, for the same At, the semi- 
implicit version was more accurate, as on might expect. 

One problem that appeared in all versions of the code (Chebyshev, finite difference, 
semi-implicit, fully explicit) was that if the initial state were made too unstable the 
energy would grow so fast that the entropy gradient eventually would become 
subadiabatic everywhere except near the top where the boundary condition forced it 
to remain superadiabatic. Consequently, convection would be damped everywhere 
except just below the top boundary. This would produce large viscous heating near 
the top which would make the rest of the zone become even more subadiabatic. As a 
result, the scale of convection quickly would become too small to resolve and a 
numerical instability would develop. This problem exists because we have a top 
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boundary that forces the radial velocity to vanish instead of a subadiabatic region, 
Resolving the thin subadiabatic region below the Solar surface would require many 
more radial mesh-points than would be feasible even with a stretched grid. In our 
model, the Solar luminosity at the top boundary is essentially all carried by the 
small-scale eddies parameterized via the eddy thermometric diffusivity. We learned to 
avoid the numerical instability by not making the state too unstable initially and by 
maintaning a larger eddy thermometric diffusivity near the top boundary. 

Although our model is rich in physics and degrees of freedom, it lacks several 
ingredients that may (or may not) be essential for simulating a stellar convective 
dynamo. Instead of solving the fully compressible equations, we have assumed that 
the convective and Alfven velocities will be small compared to the local sound speed 
in order to employ the anelastic approximation which filters out sound waves. We 
have placed a spherical boundary at the top of our convection zone, below the 
ionization zones, through which heat and magnetic energy can flow but not mass or 
angular momentum. We have assumed that our star is not rapidly rotating so 
centrifugal force will be negligibly small compared to gravitational force and our 
reference state will be spherically symmetric. The temperature in the zone has been 
assumed to be low enough to ignore radiation pressure and energy density but high 
enough to assume a fully ionized perfect gas. The mean molecular weight and the 
stellar mass and luminosity of the reference state have been assumed independent of 
radius. The diffusion of heat, momentum, and magnetic flux has been represented by 
eddy diffusion with specified scalar diffusivities that depend only on radius. Radiative 
heat flux has been treated within the diffusion approximation using time-independent 
opacities. 

We do not feel that the above assumptions and approximations will severely limit 
our attempt to gain a better understanding of global stellar convection and dynamo 
action; however, we intend to improve our model in the future by treating some of 
these problems more realistically. One deficiency of the model, that may be 
significant, is its inability to resolve very small-scale, intermittent magnetic flux tubes 
like those observed on the Solar surface. Although small-scale turbulent eddies 
presumably induce reconnection ,by stretching and deforming magnetic field lines, 
large magnetic flux may be concentrated into thin flux ropes between these eddies in 
a star. Our model is capable of resolving intricate global magnetic structure; but very 
small-scale flux ropes will not be simulated due to the effect of the magnetic eddy 
diffusivity and the truncation of spherical harmonics. Therefore, only global magnetic 
fields, averaged over length-scales smaller than the limit of our resolution, will be 
explicitly represented and not the eventual shredding and concentration into inter- 
mittent flux tubes observed on the Solar surface. 

Our preliminary MHD solutions for a Solar-like model have differential rotation, 
meridional circulation, large-scale magnetic fields, and an equator-pole temperature 
excess in fairly good agreement with Solar observations. However, the giant-cell 
velocities at our top boundary are larger than observed on the Solar surface. This 
may be due to poor choices for the three eddy diffusivities or not being able to 
resolve enough pressure scale-heights near the surface. On the other hand, maybe the 
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large-scale convective velocities quickly degenerate into small-scale velocities near the 
Solar surface due to the decreasing scale-height and the rapidly increasing 
superadiabatic gradient; or maybe the time dependence of the large-scale velocity 
structure has so far prevented good Solar observations of giant-cells. 
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